EXERCISES FOR p-ADIC HODGE THEORY

SERIN HONG

1. Introduction

1. Let E be an elliptic curve over QQ, defined by an equation
v =23 +ar+b witha, beQ and 4a® + 27b% # 0.
(1) Show that every nonvertical line and E have three intersection points, counted with
multiplicity.
(2) The group law on E, written additively, is given by the following properties:

(i) The identity element O is the point at infinity.

(ii) Given a point P on E, the vertical line passing through it and E have the second
intersection point at —P.

(iii) Given two points P, @ on E with distinct z-coordinates, the line passing through
them and E have the third intersection point at —(P + Q).

(iv) Given a point P on F, the tangent line to E at P and E have the third intersection
point at —(P + P).

Given two arbitrary points P = (z1,y1) and @ = (x2,y2) on E, derive a formula for

their sum P + Q.

Remark. It is not obvious to verify that the group law on E defined above is indeed asso-
ciative. For curious readers who attempt to verify this by themselves, there are two possible
approaches as follows:

(a) One can use the formula for the group law obtained here for a direct verification.

(b) One can use Riemann-Roch theorem to show that the group law on E agrees with the
group law on Pic?(E), the degree 0 part of the Picard group Pic(E).

2. Let E be an elliptic curve over Q and n be a positive integer.

(1) Show that E[n](Q) has n? elements.

Hint. Look at the degree of polynomials defining the multiplication by n.

(2) Establish an identification E[n]|(Q) = (Z/nZ) x (Z/nZ).

Hint. Apply the fundamental theorem for finitely generated abelian groups after
observing that E[d](Q) has d? elements for each divisor d of n.

Remark. If we replace the base field Q with another field, the conclusions of this exercise
remains valid as long as n is invertible in the base field.

3. Let E be an elliptic curve over Q and ¢ be a prime number.
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(1) Show that the ¢-adic Tate-module Ty(F) is a free Zy,-module of rank 2.
(2) Show that Ty(FE) carries a natural action of I'g.

Hint. Show first that E[¢"] carries a natural action of I'gp for each positive integer v.

4. In this exercise, we give a simple analogy between the complex conjugation and the p-adic
cyclotomic character.

(1) Let poo denote the group of roots of unity in C. Show that the complex conjugation
naturally induces a character

X : Tr — Aut(R) @ R*
with v(¢) = ¢XO) for every v € T'g and ¢ € jiso.

(2) Let ppe denote the group of p-power roots of unity in @p. Show that the p-adic
cyclotomic character x yields the relation v({) = ¢XO) for every v € [g, and ¢ € ppes.

5. This exercise requires some knowledge on the étale cohomology and the Hodge theory.
(1) Directly verify the Hodge-Tate decomposition theorem for P*.
(2) Show that the p-adic de Rham comparison theorem fails if we replace Byr by C,.

6. Deduce the identification (1.9) from Theorem 1.2.4 and Theorem 2.1.1.

7. Let vy denote the valuations on Bgr and C((z71)).
(1) Show the identity deg(f) = —voo(f) for every f € C(z).
(2) Define the degree of each f € Bgr to be deg(f) := —voo(f). Prove the identity

deg(fg) = deg(f) +deg(f) forany f, g € Bar.

8. In this exercise, we provide a precise description of the Fargues-Fontaine curve X as a
scheme that glues Spec (B.) and Spec (B('IR) along Spec (Bgr); in other words, we prove
that the topological space obtained by gluing Spec (B.) and Spec (BJg) along Spec (Bagr) is
naturally a scheme. We define the degree function on Bgr as in Exercise

(1) Under the identification Al = P — oo, prove that (91% is given by

OaL (U) for any open U C Pl with oo ¢ U,
OA%:(U —o00)” for any open U C P{ with co € U

O]P’é(U) :{
where we set OA}c(U— 00)” = { fe OAé(U— o0) = deg(f) <0 }

(2) Let us set X° := Spec (B,) and denote by oo the special point of Spec (Bg). Prove
that X is indeed a scheme with the structure sheaf given by

Oxe (U f U C X with U
OX(U)Z{ xo(U) or any open U C X with oo ¢ U,

Oxo(U —o0)™  for any open U C X with co € U
where we set Ox (U —00)™ :={ f € Oxo(U — 00) : deg(f) <0 }.
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9. Deduce properties (i), (ii) and (iv) in Theorem 2.1.2 from the original construction of the
Fargues-Fontaine curve X, given by gluing Spec (Be) and Spec (B;;R) along Spec (Bgr), and
the fact that B, is a principal ideal domain.

2. Foundations of p-adic Hodge theory

1. For affine group schemes introduced in Example 1.1.8, verify the descriptions of their
comultiplication, counit, and coinverse.

2. In this exercise, we study homomorphisms between the group schemes G, and G,,.
(1) Show that every homomorphism from G, to G, is trivial.
(2) If R is reduced, show that every homomorphism from G, to Gy, is trivial.

(3) If R contains a nonzero element o with a? = 0, construct a nonzero homomorphism
from G, to G,,.

3. Assume that R = k is a field of characteristic p.

(1) Show that the k-algebra homomorphism k[t] — k[t] which sends ¢ to tP — ¢ induces a
k-group homomorphism f : G, — G,.

(2) Show that ker(f) is isomorphic to Z/pZ.

4. Prove that an R-group is separated if and only if its unit section is a closed embedding.

Hint. One can identify the unit section as a base change of the diagonal morphism and
conversely identify the diagonal morphism as a base change of the unit section.

5. Assume that R = k is a field of characteristic p.

(1) Verify that the k-group a2 := Spec (k[t]/ t7*) with the natural additive group structure

on a2 (B) = { beB:b =0 } for each k-algebra B is finite flat of order p?.

(2) Show that o, admits an isomorphism o), = Spec (k[t, u]/(t,u?)) with the multipli-

cation on o, (B) = { (b1,b2) € B*: b =5 =0} for each k-algebra B given by
(b1, b2) - (b, b5) = (b + by, by + by — Wi (b1, bo))
where we write Wi (t,u) := ((t + w)P — t? —uP) [p € Z][t, u].

Hint. One can show that a B-algebra homomorphism B[t,t~!] — B[t]/(t?") induces
a B-group homomorphism «,2 — G, if and only if the image of ¢ is of the form
p—1
t’L
f(t) = E(bit)E(bat?) with b} = bh = 0, where we write E(t) := Z -
i
=0

P

(3) For k = F,, show that a2 fits into a nonsplit short exact sequence

00— ap — ayp — ap — 0.

P
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6. Assume that R = k is a perfect field.
(1) Given a finite abelian group M with a continuous I'y-action, show that the scheme
Mk := Spec (A) for A := ( H E) b is naturally a finite étale k-group.
€M

Hint. Since M is finite, the ['y-action should factor through a finite quotient.

(2) Prove that the inverse functor for the equivalence in Proposition 1.3.4 maps each finite
abelian group M with a continuous I'j-action to M'*.

(3) Prove that a finite étale group scheme G over a field k is a constant group scheme if

and only if the I'y-action on G(k) is trivial.

7. In this exercise, we follow the notes of Pink [Pin, §15] to present a counterexample for
Proposition 1.4.15 when k is not perfect. Let us choose ¢ € k which is not a p-th power and

-1
set G := p]_[ G; with G; := Spec (k[t]/(tF — ¢*)).
i=0
(1) Given a k-algebra B, verify a natural identification
Gi(B)%{bEB:bp:ci} foreach i =0,--- ,p—1
and show that G(B) is a group with multiplication given by the following maps:
e m;;: Gi(B) x G;(B) — G;4;(B) for i+ j < p which sends each (g, ¢') to g¢/,
e m;j : Gi(B) x Gj(B) — Gitj—p(B) for i+ j > p which sends each (g, ¢) to gg'/c.
(2) Show that G yields a nonsplit connected-étale sequence
0— Hp — G— M — 0.

Hint. To show that the sequence does not split, compare Gy with G; for i # 0.

8. Assume that R = k is a field.
(1) If k has characteristic 0, establish a natural identification End_gp(Gq) = k.

(2) If k has characteristic p, show that Endy gr,(Gg) is isomorphic to the (possibly non-
commutative) polynomial ring k(p) with pc = Py for any c € k.

9. Assume that R = k is a field.
(1) Give a proof of Theorem 1.3.10 when R = k is a field without using Theorem 1.1.16.
Hint. If k£ has characteristic 0, we can adjust the proof of Proposition 1.5.19 to obtain

an isomorphism G° ~ Spec (k[t1,- - ,t4]) for some integer d > 0 and in turn find d =0
by the fact that G° is finite flat.

(2) Prove Theorem 1.1.16 when R = k is a field.

Hint. If £ has characteristic 0, we can deduce the assertion from the corresponding
theorem for finite groups by observing that G is étale. If k£ has characteristic p, we
can reduce to the case where G is simple with k algebraically closed.
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10. Use the self-duality of elliptic curves to prove that every elliptic curve over F), is either
ordinary or supersingular.

11. Assume that R = k is a perfect field.
(1) Show that the dual of every étale p-divisible group over k is connected.
(2) Show that every p-divisible G over k admits a natural decomposition
G Gll % Gmult % Gét
with the following properties:
(i) G" is connected with (G!)V connected.

(ii) G™ is connected with (G™*)V étale.

(iii) G is étale with (G*)Y connected.

12. Assume that R = k is a field of characteristic 0. Establish an isomorphism between the
formal group laws pz and pg— over k defined as in Example 2.2.3.

o tn
Hint. Consider the map k[[t]] — k[[t]] sending ¢ to exp(t) — 1 = Z ok
n=1 "

13. Let K be a finite extension of Q, with uniformizer = and residue field F,.

(1) Show that there exists a unique formal group law p, over Ok of dimension 1 with an
endomorphism [7] : Ok[[t]] — Ok]|[t]] sending t to =t + t9.

(2) Show that u, is p-divisible.

Remark. The formal group law p, is a Lubin-Tate formal group law, introduced by the work
of Lubin-Tate [LT65] as a means to construct the totally ramified abelian extensions of K.

14. For a supersingular elliptic curve E over F,, show that ker(¢ E[p]) is isomorphic to ay,.

o)

15. Recall that every o € Z, admits a unique p-adic expansion a = Z a,p" where each a,
n=0

is an integer with 0 < a, < p.

(1) Show that the 2-adic expansion agrees with the Teichmiiler expansion on Zs.

(2) Show that the p-adic expansion does not agree with the Teichmiiler expansion on Z,
for p > 2.

(3) Find the 3-adic expansion for [2] € Zs.
(4) Find the first four coefficients of the 5-adic expansion for [2] € Zs.

Hint. The Teichmiiler lift of an element a € F, is the unique lift [a] € Z, with [a]P’ = [a].
One can inductively find its image in Z,/p"Z, = Z/p"Z for each n > 1 by Hensel’s lemma.
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16. Assume that R = k is a perfect field of characteristic p. For each A € QQ, show that there
exists a natural isomorphism N(A\)Y = N(—)).

17. Let A be an abelian variety over F, of dimension g.

(1) Show that the isocrystal D(A[p>])[1/p] is self-dual by using the fact that A is isogenous
to its dual.

(2) If A is ordinary in the sense that A[p|(F,) is isomorphic to (Z/pZ)®9, show that there
exists an isomorphism

Ap™] = (Qp/Zp)* x (pip=)?.

Hint. Show that A[p>]° has étale dual, possibly by establishing an isomorphism
D(A[p>])[1/p] = N(0)%9 & N(1)%9.

18. Let K be a p-adic field.
(1) Prove that its algebraic closure K is not p-adically complete.

Hint. There are at least two ways to proceed as follows:

(a) One can observe that K is a countable union of nowhere dense subspaces and
apply the Baire category theorem to conclude.

(b) Alternatively, one can use Krasner’s lemma to produce a Cauchy sequence in K
whose limit is not algebraic over K.

(2) Prove that Cg is not discretely valued.
19. Give a proof of Proposition 3.3.10 for G' = jipe.

20. Let K be a p-adic field and F be an elliptic curve over Of.
(1) Prove that E gives rise to a I'g-equivariant Z,-linear perfect pairing
Tp(E[p™]) x Tp(E[p™]) — Zp(1). (2.1)

(2) Deduce that the determinant character of the I'g-representation T),(E[p™]) coincides
with the p-adic cyclotomic character.

Remark. The perfect pairing (2.1]) coincides with the Weil pairing on E.

21. Describe the canonical identification
Exte, ry) (Cx (=1), Cx) = H' (T, Cre (1))
used in the proof of Theorem 3.4.13.
Hint. Given a I'g-representation V over Cx with a I'g-equivariant short exact sequence
0—Cxg —V —Cg(-1) —0,
the action of 'k on V(1) admits a matrix representation
(1)
0 1

for some map ¢ : I'x — Cg(1). Show that ¢ is a 1-cocycle on ' in Cg (1) with its class in
H'(T'k,Ck(1)) uniquely determined by the isomorphism class of V.
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3. Period rings and functors
1. Let B be a (Qp,'k) ring.

(1) Show that there exists a natural bijection between H'!(I'x, GL4(B)) and the set of
equivalence classes of free B-module of rank d with a continuous I'g-action.

(2) Show that V' € Repg, (I'x) with d = dimg, (V) is B-admissibile if and only if the
['k-action on V' ®q, B is trivial.

2. Verify that V' € Repg, (T'k) is K-admissible if and only if the I'g-action on V factors
through a finite quotient, as stated in Example 1.1.4.

Hint. Use (a strong version of ) Hilbert’s Theorem 90 to prove the identity H'(T' s, GLyq(K)) =
0 and apply the previous exercise.

3. Show that V' € Repg, (I'x) is Cx-admissibile if and only if it is Hodge-Tate with 0 as the
unique Hodge-Tate weight.

4. Prove that a p-divisible group G over Ok is étale if and only if 0 is not a Hodge-Tate
weight of V,(G).

5. Given an abelian variety A over K of dimension g with good reduction, find the multiplicity
for each Hodge-Tate weight of the étale cohomology group H},(Az, Qp).

6. Given an elliptic curve E over O, prove that the I'g-representation V,(E[p*]) is never
unramified.

7. Show that Bj; is not (Qp, I'k)-regular.
8. Show that the category Filg is not abelian.

9. Show that the (enhanced) functors Dyt and Dgg are not fully faithful respectively on the
categories of Hodge-Tate representations and de Rham representations.

4. The Fargues-Fontaine curve

1. In this exercise, we follow an argument of Fontaine to deduce Corollary 4.1.16 from the
following result:

Proposition 4.0.1 (Berger [Ber08]). The ring B, is Bézout; in other words, the sum of two
principal ideals in B, is principal.
Let us define the degree of an element x € B, to be the smallest integer d with = € t*dB:{R.

(1) Show that = € B, is a unit if and only if its degree is 0.
(2) Show that every ideal I of B, is generated by an arbitrary element of minimial degree.

2. See what happens if we mimic the construction of Op(d,r) := (mrn4)«Orn(d) for IP’,lg with
k an arbitrary field.
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