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ABSTRACT. We introduce a method for producing vector-valued automorphic forms
on unitary groups from scalar-valued ones. As an application, we construct an explicit
example. Our strategy employs certain differential operators. It is inspired by work
of Cléry and van der Geer in the setting of Siegel modular forms, but it also requires
overcoming challenges that do not arise in the Siegel setting.

1. INTRODUCTION

Automorphic forms play a key role in number theory. Automorphic forms on unitary
groups have proved to be particularly valuable, thanks to structures that arise in this
setting. Producing explicit examples of automorphic forms on unitary groups remains
challenging, though, and there are relatively few such examples in the literature.

In the setting of unitary groups, one must work with not only scalar-valued but
also vector-valued automorphic forms. We introduce a method for constructing vector-
valued automorphic forms on unitary groups from scalar-valued ones. As an application,
we construct an explicit example. Our strategy employs certain differential operators.

Our approach is inspired by the work Cléry and van der Geer carried out for Siegel
modular forms, i.e. automorphic forms on symplectic groups [CvdG15]. Their work ex-
tends a strategy of Witt [Wit41]. Unitary groups bear certain similarities to symplectic
groups. The setting of unitary groups also presents new challenges, though, which we
overcome in this paper. Related to this, the literature has many more explicit examples
for Siegel modular forms than for automorphic forms on unitary groups. This paper
achieves three goals:

(1) Extend Cléry and van der Geer’s strategy using differential operators [CvdG15]
to unitary groups of all signatures (Proposition 2.13 and Theorem 2.15).

(2) Apply this approach in an explicit example (Theorem 3.7), which does not carry
over trivially from the Siegel case and illustrates challenges new to this setting.
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(3) Provide a coordinate-free, geometric formulation of our construction (Theorem
5.5). While unnecessary for our other goals, this is a more intrinsic approach.

1.1. Summary of main results and relationship with earlier work. We draw in-
spiration from the aforementioned methods that [CvdG15, Wit41] introduced for Siegel
modular forms for Sp(2g,Z). Those forms are defined on Siegel upper half-space

9y = {7 € Matyxy(C) | *r = 7 with Im(7) positive-definite}.

Consider the restriction of a Siegel modular form f for Sp(2g,Z) via the embedding

!
N X Ng—j = Ny given by (', 7") = (T 0)

0o 7

for some 0 < j < g. We write an arbitrary element 7 € £, as

T oz
T = )
t:I: 7_//

If f vanishes to order r on ; x $,—;, then a certain restricted differential form
d}, f15,x6,_, decomposes into tensor products of Siegel modular forms on $; and $,_;
[CvdG15, Propositions 2.2 and 2.3] and can be used to produce explicit vector-valued
Siegel modular forms from scalar-valued ones [CvdG15, Section 3].

How, if at all, does this extend to the setting of automorphic forms on a unitary
group G? When G is of signature (n,n), similarities with the case of symplectic groups
suggest a starting point. Working with other signatures is more complicated. (For
example, unlike in the setting of symplectic groups, one must work with Fourier—Jacobi
expansions whose coefficients are not constants but rather theta functions.) Our results
are completely general, in the sense that we handle all signatures. Given unitary groups
U, and Ug with an embedding U, x Ug < U for U a larger unitary group, we have
a corresponding embedding of symmetric spaces H, X Hg < H analogous to the
embedding of Siegel upper half-spaces above. In this case, 7 € H is given by

( >
T =

with 7, € Ho and 753 € Hpg. Our first main result, Theorem 2.15, extends [CvdG15,
Propositions 2.2 and 2.3] to unitary groups of all signatures and is summarized here:

Theorem A (Summary of Theorem 2.15). Suppose f is a scalar-valued automorphic
form on the unitary group U that vanishes to order r on Hq X Hg.

(1) Restricted differential forms df, f|3,, <7, and dj f|3,x#, decompose into sums
of tensor products of automorphic forms on the unitary groups U, and Usg.
(2) If f is a cusp form, so are all automorphic forms appearing in (1).

It is straightforward to recover the approach in [CvdG15, Wit4l] as a special case
of the more general construction in this paper. The geometric reformulation of our
operators (Section 5, which culminates with Theorem 5.5), also suggests that this
general construction could be extended still further. This would likely come at the
cost, though, of not getting the sort of explicit example we now describe.
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As an application of Theorem 2.15, we produce an explicit example of a vector-
valued automorphic form for unitary groups. Inspiration comes from [CvdG15, Section
3], which produces vector-valued Siegel modular forms from derivatives of the Schottky
form. The Schottky form is a Siegel modular form J on $)4, defined either as the
Ikeda lift of the discriminant modular form A, or as a difference between the theta
series attached to the unimodular lattices Fg & Eg and D;%. Cléry and van der Geer
explicitly describe the Siegel modular forms diJ|s,xs, and diJ|s,xe,:

(1) J vanishes to order 4 on 3 x H7 with diJ|g,x5, = X1 ® x1 for some (scalar-
valued) cusp form y; on $s.

(2) J vanishes to order 4 on $3 x 91 with di.J|g,x6, = x2 ® A for some (vector-
valued) cusp form y2 on 3.

The scalar form x; generates the space of cusp forms on £ of weight 10. The vector-
valued form yo generates the space of cusp forms on $)3 for a specified vector weight.

In this paper, we consider an analogue of the Schottky form, namely the Hermitian
Schottky form that Hentschel and Krieg defined on a unitary group of signature (4,4)
[HK06]. For the moment, to highlight the relationship with J, we denote this form by
J. The restriction of the form J to 4 is J. It is tempting to assume all the results for
the Siegel case will carry over to this setting, but that does not quite turn out to be the
case. We obtain Theorem 3.7, which concerns forms on Hermitian symmetric spaces
H,, for unitary groups of signature (n,n) and relies on an embedding H; X H,,—;j — Hy,
analogous to the embedding of Siegel upper-half spaces above.

Theorem B (Summary of Theorem 3.7). The scalar form J vanishes to order 4 on
H3 x Hi. Furthermore, the form d.J 745 %7, , Whose weight is specified in Expression
(10), can be written as M ® A for some (vector-valued) cusp form M on Hs.

Remark 1.1. The Fourier coefficients of M ® A can be explicitly computed, as seen in
the proof of Proposition 3.6. However, this is only practical for the first few coefficients.

Key differences between Theorem 3.7 and the corresponding construction for the
Schottky form J include:

e The form .J does not vanish at all on Hs x Ha.
e We do not claim that M generates the entire space of (vector-valued) cusp forms
on H3 of its weight.

These differences reflect some new challenges that arise in the unitary setting. The
first point indicates that the order of vanishing for a modular form does not behave
well under the natural embedding of the Siegel space into the Hermitian space. The
second point is related to the fact that the dimension of the space parametrizing cusp
forms of specified weight currently remains unknown in the unitary setting, in contrast
to the Siegel setting. Consequently, in contrast to the frequent reliance on dimension
formulas for cusp forms in the Siegel setting in [CvdG15], our proof of Theorem 3.7
does not use any dimension formulas. Instead, we rely on the computation of Fourier
coefficients for the derivatives of .J.

Remark 1.2. It is natural to ask about the relationship between our differential
operators and others. The condition that f vanishes to order r on $); x $,_; ensures
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that our operator is the same (up to a scalar multiple, depending on the normalization)
as the operator obtained by applying a particular Maass—Shimura operator (that takes
holomorphic forms to nearly holomorphic forms of order r, as in, e.g. [Har79, Har81a,
Har81b,Shi81]) to f and restricting the resulting nearly holomorphic form to $; x $4—;.
It would also be interesting to explore the relationship between our differential operators
and other holomorphic differential operators that have been constructed for symplectic
and unitary groups, in particular Rankin—Cohen brackets [Ban06, Dun24, MS17, EI98,
Ibu99].

1.2. Organization of the paper. Section 2 introduces automorphic forms on unitary
groups and certain differential operators. This section then presents our main results
about differential operators, Proposition 2.13 and Theorem 2.15, producing vector-
weight forms from scalar-weight ones. In Section 3, we apply the operators in an explicit
example. The main result of this section is Theorem 3.7. Section 4 presents proofs of
the results from Section 2. Finally, Section 5 provides a geometric reformulation of the
operators. While this geometric portion is unnecessary for the results earlier in the
paper, it is likely to be of interest to those working with Shimura varieties or seeking
an intrinsic, geometric understanding of the operators from Section 2.

Acknowledgements. We began this project during the 2022 Arizona Winter School,
and we would like to thank the organizers of the Winter School for making this collab-
oration possible. We would also like to thank Sam Mundy, who served as the project
assistant during the five-day Winter School, as well as the remaining participants of
the project group: Niven Achenjang, Paulina Fust, Trajan Hammonds, Kalyani Kansal,
Kimia Kazemian, Yulia Kotelnikova, Luca Marannino, Aleksander Shmakov, and Wo-
jtek Wawréw. Eischen would also like to thank Ger van der Geer for answering her
questions about [CvdG15] when she was formulating this project. We are also grateful
to the referee for helpful suggestions.

2. AUTOMORPHIC FORMS AND DIFFERENTIAL OPERATORS

We begin by introducing automorphic forms on unitary groups, and we construct
certain differential operators that act on them. In this section, we state our main
results in a direct (coordinate-dependent) way, because this will be best suited to our
application concerning an explicit example in the following section. The proofs of the
main assertions (Proposition 2.13 and Theorem 2.15) will be postponed to Section 4,
after an example in Section 3. For a more comprehensive treatment of automorphic
forms on unitary groups from the perspectives employed in this paper, the reader might
also consult [Eis24].

2.1. Complex automorphic forms. Firstly, we specify notation and conventions for
holomorphic automorphic forms on unitary groups considered.

Let K/Q be an imaginary quadratic number field, and let ¢ be the unique nontrivial
element of Gal(K/Q). Given k € K, we set k := c(k). Consider a finite-dimensional
K-vector space V equipped with a non-degenerate Hermitian pairing (-,-) : VxV — K.
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Definition 2.1. The unitary group U(V) = U(V, (-,-)) is the algebraic group over Q
whose points are given by

U(V)(A) ={g9 € GL(V ®q 4) | {(gv, gw) = (v,w) for all v,w € V ®g A}, A€ Alggy.
More generally, the similitude unitary group GU(V) = GU(V, (-, -)) is given by
GU(V)(4) = {(g,v(9)) € GL(V &g A) x A% | (gv, gu) = v(g){v,w)}, A€ Algg.

The map v : GU(V) — Gy, given by (g,v(g)) — v(g) is a group homomorphism, with
Kerv = U(V). While GU(V) will play a role later in Section 5 for algebro-geometric
interpretation, for our present purposes it suffices to work with the group U(V') only.

Denote by Ay the ring of finite adeles of Q. A congruence subgroup I' C U(V')(Q) is
a subgroup of the form

r=u\Wv)Qnu
for some open compact subgroup U C U(V)(Af). Equivalently, upon choosing an

integral model U(V') of U(V), T is a subgroup of U(V)(Q) that contains the principal
congruence subgroup

I(N)={geU(V)(Z)|g—1decU(V)(Z/NZ)}

for some N as a finite-index subgroup (this property does not depend on a choice of
integral model, see e.g. [Mil04, Section 4] for a detailed discussion).

Choosing a suitable basis of V' ®g R, the pairing (-,-) can be represented by the
matrix

Id,, O
Tinin = [ 0 —Idrj
for some pair of integers (m,n). In this case, U(V)(R) can be identified with the Lie
group
U(ma n) = {7 € GLd((C) | tﬁlm,nﬁ’ = m,n}a
where d = m +n. We call the pair (m,n) the signature of U(V'). If n (resp. m) is zero,
we simply write U(m) (resp. U(n)).
The group U(m,n) naturally acts on the bounded Hermitian space

Hmn = {7 € Maty,xn(C) | Id,, — 71 is positive-definite}

via linear fractional transformations, i.e.

yr = (AT +B)(CT+ D)™, 7€ Himm, 7= {A B} € U(m,n)

¢ D

(where the sizes of the blocks are determined by A being m x m and D being n x n).
Given v € U(V)(R), identified with U(m,n) as above, and 7 € H,,n, we define the
automorphy factors Ay (1) € GL;,,(C), py(7) € GL,(C) as follows:

A B
C D

With this setup, we employ the following definition of automorphic forms:

M(T)=B(r)+A, uy(r)=Cr+D, ~v= { } € U(m,n).



CONSTRUCTING VECTOR-VALUED AUTOMORPHIC FORMS ON UNITARY GROUPS 6

Definition 2.2. Let U= U(V) be a unitary group of signature (m,n), let T' C U(Q)
be a congruence subgroup, and consider a representation (p, W) of GL,,(C) x GL,,(C).
An automorphic form on U of level I and weight p is a holomorphic map f : Hy,p, — W
satisfying

(1) F() = (Fllo)(7) = p O (1), iy (1) T f(97), 7 € Hiny vET

When the signature is (1,1) and U is quasi-split over Q, we additionally require that
f is holomorphic at all cusps. Denote by M,(I") the space of all automorphic forms of
weight p and level T'.

Remark 2.3. We defer the discussion of holomorphicity at cusps to Remark 2.7, after
introducing a variant of automorphic forms (amounting to a coordinate change) that is
more suitable for the description of the condition. For now let us only remark that in
all the cases except of quasi—split unitary group over Q of signature (1, 1), the analogue
of the condition is automatically satisfied by Koecher’s principle [Lan16].

Remark 2.4. Using the transitive action of U(R) on #,,, and a point whose stabi-
lizer is Koo = U(m)(R) x U(n)(R) C U(R), one can view such a map f as a W-valued
function on U(R)/K. Recall that I' = U(Q) NU for some open compact subgroup
U UAy).

As is well-known, f can be extended adelically to a left-U(Q)-invariant W-valued
function ¢ on U(A)/K such that ¢ is right-invariant under U-translation and right-
equivariant under K -translation (and the natural p action of K, C GL,,(C)xGL,(C)
on W). One says that ¢ is an automorphic form on U of level U and weight p. For
more details, see [Eis24, Section 3.4]

Lastly, using algebraicity of the associated Shimura variety, one can view ¢ as a
section of a certain automorphic vector bundle associated to p. We do not include
precise details here to avoid introducing additional notation that is not necessary later.
For instance, one technically needs to address the passage from U to GU to make this
last step precise. For more details, see [EHLS20, Section 2.7].

In Section 5, we pass to this geometric point of view, assuming familiarity with
the connection between these two perspectives, to discuss algebraic properties of the
differential operators constructed below.

Example 2.5. In the case of the representation
Ay = det* Rdet! : GL,,(C) x GL,(C) - C®C~C,

we denote the space of automorphic forms of weight p (and level I') also by M ;y(I'),
and refer to its elements as automorphic forms of weight (k,1).

Furthermore, we refer to such automorphic forms as scalar-valued, and to general
automorphic forms as vector-valued when emphasising the distinction.

We sometimes write Ay as Ay, ) (k) When we wish to emphasize the choice of
ranks for both general linear groups involved in the definition.

2.2. Variant: Hermitian modular forms. Motivated by the example discussed in
Section 3, we consider the following variant. Suppose U = U(V) is of equal signature,
i.e. m = n, and let us additionally assume that U is quasi-split over Q. Then a suitable
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choice of basis of V ®qg R (in fact, of V' by the quasi-splitness assumption) allows one
to express the pairing (-, -) by the matrix 7, where

—Idn]

= [Idn
identifying U(R) with
U(1n) = {7 € GL2a(C) | "Fnny = 1n}-
The group U(n,) then naturally acts on the unbounded Hermitian space
Hp = {7 € Mat,x,(C) | i('F — 7) is positive-definite}

again via fractional linear transformations, i.e.
A B
v =(AT+B)(CT+ D)™, 7€M, 7= [C D] € Ulny) -

We then define, for v € U(R) viewed as an element of U(7,), the automorphy factors
Ay (7), iy (7) € GL,(C) as follows:

A (T) = C('r) + D, py(7) =Cr+ D, ~= [é g] € U(np).

Definition 2.6. Let U= U(V) be a unitary group of signature (n,n) and quasi-split
over Q. Consider a congruence subgroup I' C U(Q) and a representation (W, p) of
GL,,(C) x GL,(C). A Hermitian modular form of level I' and weight p is a holomorphic
map f : H, — W satisfying

F) = (Fllon)() = p (1), iy (1) f(7), 7€ My 7 €T

Moreover, when the signature is (1,1), we additionally require that f is holomorphic
at every cusp.

Hermitian modular forms were first introduced by Hel Braun in [Bra49,Bra50,Bra51].

Remark 2.7. Let us spell out the meaning of the holomorphicity condition along the
lines of [Shi00, § 5]. Given a Hermitian modular function f of level I" and weight p (i.e.
a function satisfying the modularity condition of Definition 2.6, but not necessarily the
holomorphicity at cusps), f admits a Fourier expansion of the form

(2) f(r) = Z c(h) exp(2mitr(hT))

heMV

where
: . e . .. [1d
e M is a Z-lattice of complex Hermitian n X n matrices o with [ 0" Ig } erl,
n

i.e. such that f(7 + «) = f(7) (existence of such lattice is guaranteed by the
quasi-splitness assumption),

e MYV is the Z-lattice of all complex Hermitian n x n matrices h with tr(ha) € Z
foralla € M,

e c(h) are vectors in the underlying vector space W, of p.
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When n = 1, the Hermitian matrices h € MY and the coefficients c(h) are just real
and complex numbers, respectively. In this case, we say that f is holomorphic at oo
if ¢(h) = 0 whenever h < 0. We say that f is holomorphic at all cusps if for all
B € SL2(Q), the function f||,8 (automorphic of level 371T'3) is holomorphic at occ.

We emphasize that for higher n, the analogous condition is automatic by Koecher’s
principle, which in the presence of Fourier coefficients can be stated as follows.

Proposition 2.8 (Koecher’s principle; [Shi00, Proposition 5.7]). When n > 1 and f
is a Hermitian modular function of some weight p and level ' C U(n,,), in the expression
(2) one has c(h) # 0 only if h is positive-semidefinite.

Fourier expansions also allow us to conveniently define Hermitian cusp forms.

Definition 2.9. Given a Hermitian modular form f of level I' and weight p, f is
called a cusp form if for any § € U(Q), in the Fourier expansion (2) of f||,53, one has
c(h) = 0 whenever h is not positive-definite.

We denote the space of all Hermitian modular forms of weight p and level I" again by
M,(T") (we hope that there is little potential for substantial confusion). Similarly, we
employ the notation M, ;y(I') when p = det” X det!, and refer to Hermitian modular
forms of this type as scalar-valued. We denote the space of all all Hermitian cusp forms
by S,(I) (and Sg () if p = det” K det').

Following Shimura’s notation from [Shi00], when convenient to make the disctinction,
we will refer to unitary groups and automorphic forms in the coordinates described in
Section 2.1 as the “case (UB)” (where “UB” stands for “unitary ball”) and to Hermitian
forms on U(7n,) in the sense of this section as the “case (UT)” (i.e., “unitary tube”).

2.3. Further variants. Following [Shi78], let us mention two further variants that will
serve an auxiliary purpose thanks to their convenience in expressing automorphc forms
via Fourier expansions. Let us fix a unitary group U of signature (m,n).

Firstly, we consider the case m # n. Without loss of generality, let us assume that
m > n. Then U(R) may also be realized as the group

6(’m,n) = {9 € GLy1n(C) | t?nm,ng = nm,n}a

1d,
Imn = S
—1d,

with S diagonal skew-Hermitian and such that —iS is positive-definite. Then, U(R)
naturally acts on the symmetric space

where

Hmn = {z = [ﬂ | 7 € Matnxn(C), u € Mat(y_nyxn(C), —i(r —"7) +i'uSu > O} .

This is the convention taken in [Shi78] (up to order of coordinates). The appropriate
action and automorphy factors Ay(2),u,(z) (in the notation of loc. cit., x(7,z) and
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(7, z), resp.) are given as follows. For a matrix

A By (4 _
v = Ay By (O] € U(m, n)
Az Bz (5

(with diagonal blocks square of sizes n, m —n and n, respectively) and z = [ﬂ € 7-lm,n,

one has

v(z) = qﬁ; gj H + [gﬂ) (A37 + Bau+ C3) ',

u

A3'r+Cs  Az'u+BsS
M(z)= |2 = e =4, z) = A3T + Bsu+ (3.
(%) [S(AQtT—FCg) S(Aytu+ BaS ) o(2) = Ag7 + Byu + C
The corresponding automorphic forms are then defined as in Definition 2.6. As ex-
plained in loc. cit., the automorphic forms admit Fourier—Jacobi expansions, that is,

they can be written in the form
f(r,u) = Z c(u; h) exp(2mitr(ht)),
h

with h ranging over a suitable lattice of n x n Hermitian matrices and the coeffi-
cient functions c(u; h) are certain theta functions. Similarly to the previous case, the
Koecher’s principle implies that c(u;h) = 0 unless h is non-negative (cf. [Shi78, p.
570]).

Lastly, let us consider the case m = n > 1, but when U is not quasi-split over Q. By
[Shi78, §6], the following form of the group can nonetheless be achieved:

U(R) ~ U(7,) = {g € GL2,(C) | "ging = 7},
with
= o
_Idn—l

where s,t € K are pure imaginary elements whose product is positive. The associated
symmetric space is given as

H, = {Z € Mat,n(C) | i [tz Id"} TIn [IdZ ] > 0}

Automorphic forms on H,, admit Fourier-Jacobi expansions of the form

f(r) = Z c(u,v,w; h) exp(2mi tr(ht')),
h

where we consider the coordinates
~ U v
H,>71= LU T,} , u€C, 7€ Mat,_1)xn-1)(C)

and h ranges through a suitable lattice of (n — 1) x (n — 1) Hermitian matrices. Once
again, the coefficients c(u, v, w;h) vanish unless h is non-negative.
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2.4. Restrictions of automorphic forms. Let us fix a choice of K,V (-, ), the cor-
responding unitary group U = U(V) of signature (m,n), and a choice of a congruence
subgroup I' as in the previous section. Consider a decomposition V' = V; & V5 where
Vi, Vo are vector subspaces orthogonal for the pairing (—, —). This induces a natural
embedding

7]:U1XU2‘—>U

where U; = U(V;), i = 1,2. Additionally, let us choose congruence subgroups I'; C
U;(Q) such that n(I'; x I'9) CT". Let (m;,n;) be the corresponding signatures, so that
(m1,n1) + (M2, n2) = (m, n).

We fix a choice of one of the two versions of coordinates discussed in Sections 2.1
and 2.2, resp., the same for all groups U, U; and U,. Explicitly, we consider one of the
following two options:

(1) In the case (UB), we identify U(R) with U(m,n), Uy (R) with U(m1,n1) and Us(R)
with U(mg,ng). In this case, we set H = Hp p, HD) = Homymy and HE = Himono-

(2) When m = n, m; = ny and mg = ng, with all the groups Uy, Uy, U quasi-split over
Q, we may consider the case (UT), i.e. we identify U(R) with U(n,) and U;(R)
with U(ny,), i = 1,2. In this case, we set H = Hp, HOD = H,, and HE = Hoy -

We will discuss both of these cases at once, in a unified way. To that end, from
now on we use the term “automorphic form” to refer both to automorphic forms in the
sense of Definition 2.2 in the case (UB), as well as to Hermitian modular forms (from
Definition 2.6) in the case (UT).

Regardless of which case occurs, the bases of (V;)r giving the chosen coordinates
may be chosen so that n becomes the map

al bl
al bl ao b2 ag b2

n: Ul(R) X UQ(R) — U(R), e dl s ¢ d2 — ¢ dl
(6] d2

The corresponding embedding of symmetric spaces is then given by the map
i HD x HO SN, (r,7) — [Tl T} ,
2

which is clearly Uj(R) x Ug(R)-equivariant in the obvious sense.
We fix a notation for coordinates on H compatibly with the embeddings, that is,

(!

(3) Hafz[y

l’] , T1 € H(l), Ty € H(Q),
T2
where x = (2;5) and y = (y;;) are rectangular blocks whose dimensions are determined
by the blocks 71, 7. If needed, we will refer to the coordinates (z;;) as “a-coordinates”,
and similarly, to (y;;) as “y-coordinates”.

Observe that for v = 1(y1,72) € T with 4; € T; and 7 = (71, 72) with 7; € H®), we
have

Ay (1) = A (1) ) {:U"h (1)

Amﬂ o T iy (72)
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It follows that, when k,[ are arbitrary integers, the restriction of a form f € M) ()
to a function on HM x H® defines a map

(4) Mgy (T) = Mgy (T'1) @ Mgy (T2) -

In terms of the coordinates (3), the map is given by f — f|z=0, i.e. by restriction to
y=0

the locus where all x;; = y;; = 0.

2.5. The construction. Fix the notation for (k,1),U;, U, H® I';,T etc. as in Sec-

tion 2.4. Our next goal is to describe the desired differential operators on automorphic

forms in coordinates. To formulate the construction, the following calculus notation

will be useful.

Notation 2.10. Given a function f(z1,...,x;), and an (ordered) tuple of indicies
a = (i1,i2,...,i,), denote
.
0o f = Oz 8 ! o
i, 0%y . .. 0T,
For r > 1, d" f denotes the r-th total differential of f, that is, the (symmetric) r-linear
form on the tangent space given in coordinates as

drf = Z axafdxa )
o

where av = (i1, 19, ...14,) runs over all (ordered) r-tuples of indices for coordinates, and
dz, denotes dz; dz;, ...dz;, .

When g = (g1, 92, - - - g;) is a vector function in variables y1,ys,. .., y:, we denote by
d"g the tensor (d"g1,d"gs,...d"g;) (so that dg = d'g agrees with the usual meaning of
the tangent map).

Remark 2.11. In this notation, we have the following convenient forms of the chain
rule:

d(fog)=dfodg,
d"(fog)=>_ > d%fo(d"g,d”g,....d"g).

a=1bj+ba+---+bg=r
We are now ready to proceed with the construction. To make the construction more
transparent, we start by formulating the case of the first derivative separately.
For every pair of non-negative integers (m,n), define

Plmm) (k) = Dmn), (k1) © (Psta B 1) : GLin(C) x GLy(C) = GL(C™ ® C) =~ GL, (C),
(U, V) — det(U)* det(V)!U ,

p(_m,n),(k,l) = A(m,n),(k,l) & (]_ X pstd) : GLm(C) X GLn((C) — GL(C ® Cn) ~ GLn<(C),
(U, V) — det(U)* det(V)'V,

as representations of GL;,(C) x GL,(C). Here, Ay, ) (k) 15 as in Example 2.5 and
pstd (resp. 1) denotes the standard (resp. trivial) representation of the appropriate
dimension.
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Remark 2.12. When (m,n) = (m;,n;) for i = 1 or 2, as in Section 2.4, we simply

write p (kD) for p(mz,nz) (kD)

For a holomorphic function f : H — C, we denote by du f|y1) @ the form

xf’?—[(l)x}[@) = drf’m 0 = Z O dl’l]
Lij

;=0
y5:=0
that is, the form obtained from df by projection onto the span of differentials of the
z-coordinates, and then setting all z- and y-coordinates to 0.
Similarly, dy f|,a) @ is defined as

Ay flpncauen = dyfle=g = Z 8 : :
]Z xij:O
yj:=0
i.e. the analogous form where we project df onto dy-coordinates instead before re-
stricting to HM x H ),

Proposition 2.13. Let f : H — C be an automorphic form of weight (k,l), and
assume that the restriction f|,,)y ) vanishes.
Then, the differential form d f|1) s Is a tensor product of vector-valued auto-
morphic forms of level I'1 and I's respectively, and weight pi(w) and Py, () respectively.
Similarly, the form dy f|y0) 2 is a tensor product of vector-valued automorphic
forms of level I'1 and I'y respectively, and weight pli(k,l) and p;’(k’l) respectively.

Remark 2.14. To better understand the content of Proposition 2.13, let us be more
explicit about the expected modularity rule. By convention, we identify the space
Mat, xny (C) of my X ng complex matrices with the GL,,, (C) x GL,,, (C)-representation
pstd X pstd, with the action given by the formula

p(A,B)(X)=AX"'B, (A, B) € GLy,,(C) x GL,,(C), X € Maty, xn,(C).

The form d, f|z=o naturally takes values in the dual space Mat;,, xn,(C)", on which
0

GL,, (C) x GL,,, (C) acts via

P/(A, B)(e)(X) = a("AXB) (= a(p("A,"B)(X)),
and it is easy to see that the resulting action makes Maty,, xn,(C)" into a representation
which is again isomorphic to pstq X pstq-

The modularity condition of Proposition 2.13 can then be rephrased as follows: as-
suming the vanishing of f|,1) 4@, for an element ~ of the form

aq b1

_ A B _ ag b2 _
7_{0 D}_ a1 dy =n(y,7) el

(a1 by as bs
(’71772) = (|:C1 d1:| s |:02 dg]) el x F27
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and (11, 72) € HY x HP)| we have

([ )

= 0 (P s s (71), 1 (7)) ™4, Dy iy (M (72), 11 (72)) ) (dxf([%ﬁ ’Vﬂzb)'

Similar interpretation applies to the case of the form dy f|,;1) 4 (Where we instead
consider the space Mat,, xn, (C) etc.).
Let us now describe the general case of higher order derivatives. Given a holomorphic

map f : H — C, the form d"f projected onto the dz-coordinates and restricted to
HO x 1)

(5) d;f|7-[(1>><7-¢(2> = d;f|x:0 = Z Oz [lz=0 dzg
y=0 o y=0

(where a runs over all r-tuples of indices for the z-coordinates), is a map from HD x
H®@ that naturally lands in the space of r-linear forms on m; x ns complex matrices,
that is, in Sym” (Mat,, xn, (C)Y).

The natural left action of GL,,, (C) X GL,,(C) on Mat,,, xn,(C) (as outlined in
Remark 2.14) gives a right action * on Sym” (Mat,, xn,(C)Y) via

[B* (A, B)](X1...X,) =B(AX1'B,AX>'B, ..., AX,'B),
where (A, B) € GL;,, (C) x GL,,(C), which we make into left action by the rule
(6) (A, B)(B) =B+ ("A,'B).

On the collection of coefficients (0, f|z=0)a, the corresponding action is the expected
=0

action Sym" (pstaXpsta) where pgiq again stands for the standard representation of GL,y,,
and GL,,, respectively.
We have the decomposition

(7) SymT (pstd X pstd) = @ S)\ (pstd) X S)\ (pstd)
A

(e.g. by [FH13, Exercises 6.11(b), 4.51(b)] or [Wey03, Corollary 2.3.3]) where A runs
over partitions of » and S* denotes the Schur functor.
For each A, denote by

Az Flym xne = dzafla=o
y=0
the map d, f|,,1) «3 composed with the projection onto the S* ® S*-factor.

By a similar discussion, we define the forms d , f l4;0) (2 (the only difference being
the dimensions of the matrix space, which is in this case Maty,, xn,(C)). The higher-
derivative analogue of Proposition 2.13 is the following.

Theorem 2.15. As in the situation of Proposition 2.13, assume that the forms
d3 fly ) xp@ vanish for all s with 0 < s < r. Then for every partition A & r, the
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form di » f is a tensor product of automorphic forms of weights

HA) xH(2)
PI’(?CJ) = Ay ), (k) @ (S (psea) K1) = (detk ®S)\(pstd)> X det’
and

p;’(i\g’l) = A(mz,nz),(k,l) ® (1 X S)\(pstd)) = det" X <detl ®S)\(Pstd)) :

Similarly, if the forms d;f’H(l) @) vanish for all s < r, then the form d; /\f’
>< 9

is a tensor product of automorphic forms of weights

HA) xH(2)

Prikn) = D). ht) © (1S (pya)) = det* B (det! ©5* (puta))

and
p;’(?;J) = A(mg,ng),(k,l) & (S)\(pstd) X1)= (detk ®S)\(pstd)> X det! .

Remark 2.16. By convention, we identify both d¥f and dg f with f itself, so that

vanishing of either of the forms d’f |y sy Or dg f ‘ is equivalent to the

HA) xH(2)
assumption f|ya), 42 = 0 of Proposition 2.13.

Remark 2.17. The choices of coordinates used in this section, i.e. for cases (UB) and
(UT), are especially useful in describing our differential operators explicitly. However,
it will be a consequence of the discussion in Section 5 that the construction described
in this section is in fact coordinate-independent. In particular, the obvious statements
for automorphic forms as described in Section 2.3 remain valid.

Let us describe one particular case where the different variants of coordinates will
be useful later on. Suppose that m # n and that the factor U; is quasi-split and of
signature (1,1). We may then consider the diagonal embedding of symmetric spaces
Hq X 7—~[m,1,n71 — ﬁm,n, and fix coordinates on ﬁmn accordingly, i.e.

1 x
~ T T ~
(8) Hm,n > [ ] =|z T2, T1E Hl, { ] S Hmflmfl.
u u9
w U2

Letting y denote the column vector t[z w], the operators dy A (=) and

‘Hlxﬁm—l,n—l
dy, /\(_)‘Hlxﬁ _, ., make sense and satisfy conclusions of Theorem 2.15 (producing
Hermitian modular forms for the first factor and automorphic forms in the sense of

Section 2.3 for the second factor).

3. EXAMPLE: RESTRICTING A HERMITIAN ANALOG OF THE SCHOTTKY FORM

Hentschel and Krieg construct a Hermitian analog of the Schottky form as a suit-
able linear combination of Hermitian theta series of even unimodular Gaussian lattices
[HK06]. We will briefly review their construction, and then use it to construct a vector-
valued automorphic form.
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The three Hermitian positive definite matrices

20 0 0 110 1 2 -1 0 —-1-1-1—31+13 2 0 1+ 1 0O 0O 0 o0
02 0 0 -11-10 -1 2 1= 0 0 0 0 —3 0 2 ¢ 1-2 0 0 0 O
00 2 0 011 -1 0 144 2 0 0 0 0 1 1-¢ =2 2 0 0 0 0 O
00 0 2 -101 1 -1 0 0 2 1 1 37 -1 -t 144 0 2 0 0 0 O
1-1 0 -1 2 00 O ’ -1 0 0o 1 2 1 ¢ —1 ’ 0 0 0 0 2 0 147 1
11 1 0 020 O -1 0 0 1 1 2 3 -1 0O 0 0 0O 0 2 4 1—
60-11 1 002 0 i 0 0 —i —i —1 2 14 0 0 0 0 1-¢ —2 2 O
10-11 000 2 1—-i ¢ 1 —1-1-1—i 4 0 0 0 0 —il+i O 2

will be denoted by Sy, So, and S3, respectively. Their exact values will not be important
to this discussion, but they arise as the Gram matrices of the three isometry classes of
even unimodular Gaussian lattices of rank 8 [HK06]. Each Hermitian positive definite
matrix S; gives rise to the Hermitian inner product (v, w); = w*S;v on Z[i]®.
We can then define Hermitian theta series
@En) (1) = Z exp(mi tr(tMSi MT)) = Z az(n)(h) exp(2mi tr(hT))
MezZ[i]sxn h
with Fourier coefficients
al™ (h) = #£{M € Z[i]¥*" : "MS;M = 2h}

(9) = #{’Ul, oo, Up € Z[’i]s : <Uj,’Uk>Z' = 2hkj}'

Hentschel and Krieg consider the linear combination F(™) = 8(9&”) - 15(95”) + 7@:(,)”)
and demonstrate that F) is a Hermitian analog of the Schottky form [HKO0G6].

Lemma 3.1. The linear combination F4) = 8@54) — 15@%4) + 7@%4) is a nonzero cusp
form of weight 8, and the restriction F*) |s, is a multiple of the Schottky form.

Proof. This is [HK06, Theorem 3.1(c) and Corollary 3.4]. O

In contrast, F(!), F®) and F® all vanish.

Lemma 3.2. The linear combinations F(™) = 8(95”) — 15@§n) +7®;(3n) vanish for n < 3.
For n =1, we have @gl) = @gl) = @gl).

(n)

i

) =a (M ]):

(n)

%

Proof. From the combinatorial description of a; ’(h) given in Equation (9), we have

In other words, each Fourier coefficient of ©; " appears as a singular Fourier coefficient
of @Enﬂ). The same is true for the linear combination F(. In particular, if all
singular Fourier coefficients of F("+1) vanish (i.e., if £+ is a cusp form), then F(®
must vanish. Since F® is a cusp form, this shows that F(™ vanishes for n < 3.
Lemma 3.3(c) in [HKO06] states that @ﬁ")Lgn = @gn)|gn, where S, denotes the Siegel
upper half-space of degree n. In particular, we have @gl) = @él) since 81 = Hi. But

then the relation 8@9) — 15@51) + 7@&1) = 0 forces @gl) = @S) = @S). U
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Remark 3.3. Let us be explicit about the setup for our example. We fix the field
K = Q(v/—1) = Q(¢) and consider the groups U(n,) treated as algebraic groups with
the obvious integral model U(n,), i.e.

U(na)(A) = {g € GLan(A @z Z[i]) | "Giing =nn}, A€ Algy.

The form F® is then Hermitian modular of weight (0,8) and full level I' = U (1) (7).

To apply our construction, we consider the diagonal embedding of U (n3) x U(n1) into
U(ng). It is worth noting that the standard representation pgq associated with the sec-
ond factor as in Section 2.5 is one-dimensional. Consequently, the decomposition (Equa-
tion (7)) of Sym” (pstq X pstq) in terms of Schur functors is trivial, i.e. the S* XS terms
will vanish unless A = (). That is, we have Sym" (psta®pstd) =~ Sym” (psea)XSym” (psta),
and there is no need to take any projection to a S* S*-component in our construction.

We will show that F®) vanishes to order 4 along Hs x H; and that the fourth
derivative dﬁF(‘l) |74 x4, 1S @ nonzero vector-valued automorphic cusp form. We will do

this by explicitly computing the Fourier expansion of the derivatives dl, F' 4 |72 x 1, and
(n)

making use of the combinatorial description of a; ’(h) given in Equation (9).

Remark 3.4. Using the notation of Section 2.1, the weight of F() is the 1-dimensional
representation Agg = 1Xdet® on GL4(C) x GL4(C). Upon restriction to U (n3z) x U(n1),
its weight is (1 5 det®) X (det® ®1) on (GL3(C) x GL3(C)) x (GL{(C) x GL{(C)).
The representation on GL;1(C) x GL;(C) corresponds to the weight of modular forms
on U(m) = SLy(C); in this case, modular forms of weight 8 on SLo(C).
Lastly, according to Theorem 2.15 (omitting any choice of partitions A of r = 4), the
weight of d2F®)|3,x3, and dyF (|3, %3, are the representations

(10) (Sym?(psta) M det®) X (det® K det?)
and
(11) (1 X (det® ® Sym*(pgq))) ¥ (det'? ®¥1)

of GL3(C) x GL3(C) x GL1(C) x GL1(C) respectively. Once more, the GL;(C) x GL1(C)
part corresponds to the weight of modular forms on U () = SLy(C). In both cases,
we obtain modular forms of weight 12 on SLy(C).

Set ¢ = 8, cg = —15, and ¢cg = 7. Let i, € H3 and o € Hi. Then the Fourier
expansion of F(|3, 3, is given by

(o) ()
T 2t () e G (B 2T )

(12 :zcizexp<zm-tr<hm>>exp<2mf<hm>>2“54)(Vé H)

) hi,ho h3
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More generally, we can compute

SRR (.
s w5 one ([ 55 2)

% h1,ha,hs
o (| R to—
= Zci Z az(» ) 1 3 exp(2m’ tr(thl + homo + hsyx + h3y))
i hihahs s ho

Then the Fourier expansion of d F(4) 245 %7, is given by

o [ )

= Z e Y a th ED (2mi)"hg exp(27i tr(h1 Ty + hoTe)) dg

% hi,ha,h3 3
(13)
ti
(271) exp(2mitr(hym)) exp(2mi tr(haT: C h$a (4) 1 ohs dx,.
E ety B g ([

Proposition 3.5. The restriction F* |7.[3X9{1 vanishes.

Proof. The combinatorial description of al( )(h) given in Equation (9) tells us that
ti
> ([Zl zﬂ) = ol (hn)af") (hy).
3 3 N2
3
Then Equation (12) and Lemma 3.2 give

Fw([ D Zf% (116" (72) = FO(r)0M) () =0, O

Proposition 3. 6 The restrictions A, F®* |y, «%, vanish for r # 0 (mod 4), but the
restriction d2F®) |4, x3;, does not vanish.

Proof. Equation (13) tells us that each Fourier coefficient of d7F® |3, .4, is of the

form .
hi hy
ezt ([ )
for fixed hq, ha, and a. Equation (9) lets us rewrite this as

(2mi)" Z ci > > (vn,va){ (v, va) 2 (vs, va) 5

V1,V2,V3 V4
(vj,08)i=2(h1)kj (Va,va)i=2h2
where a = (a1, a9, a3) with a1 + @ +ag = 7.
If r 2 0 (mod 4), then the values of the inner sum at vy, ivy, —v4, and —ivg will
cancel with each other, so every Fourier coefficient of dgF(4)|H3X%1 vanishes.
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To show that the restriction d4F |H3><7-L1 does not vanish, it is enough to find one
Fourier coefficient that does not Vamsh Set hy = I3, ho = 1, and a = (4,0,0). Then
the Fourier coefficient in question is given by

(27”')4 Z (&) Z Z ’Ul, ’U4
7 V1,V2,V3
(vj,0k)i=20 1, (v47v4) ;=2

For each i, the number of vectors v satisfying (v,v); = 2 is exactly 480. For each i, let
C; denote the set of these 480 vectors. Then we can write the sum as

Sey | Y 1[z<m,v4>4]

7 v1€C; v2,v3€C; v4€C;
(vj,0)i=0jk

which we can compute to be exactly 1981808640.
In order to enumerate the 480 elements of each C;, we found it helpful to use the

Cholesky decomposition S; = di_1 tEDZ-LZ-, so that the problem of finding ‘vS;v = 2
becomes the simpler problem of finding tLTvDZ-(LiU) = 2d;. O

Theorem 3.7. The restriction d4F |H3X7.[1 is a nonzero vector-valued automorphic
form. It can be written as a pure tensor M ® A.

Proof. Theorem 2.15 and Remark 3.3 show that if the restrictions d5F*)|,qy, van-
ish for all s < 7, then the restriction d7F® |3, .3, is a vector-valued automorphic
form. Then Propositions 3.5 and 3.6 tell us that diF (4)\H3X%1 is a nonzero vector-
valued automorphic form. It is a tensor product of vector-valued automorphic forms
for U(n3) and scalar-valued automorphic forms for U(n;) of weight 12. Then we can
write d2F®W |y, x3, = Mo ® Bz + M ® A. But comparing Fourier expansions with
Equation (13) forces My = 0 and d2F |3, = M @ A. O

In contrast, the restriction F4)|3;,, does not vanish.

Proposition 3.8. The restriction F*|3, 3, does not vanish.

Proof. Recall from Lemma 3.2 that the theta series @§2) satisfy the linear relation

8@52) - 15@&2) + 7@&2) = 0. There are no further relations since the theta series 6)52)
span a vector space of dimension 2. One way to see this is to observe that the theta series

@Z@) are not cusp forms, but [HK06, Theorem 3.1(b)] states that the linear combination

8@(2) + 3@(2) + 5@(2) is a nonzero cusp form.
Now suppose that the restriction F* |’H2><”H2 did vanish. Then, as in the proof of
Proposition 3.5, we would have have

F(4)<{n T2]>:8@52)(71)@9)(72)—15@9(71)@&2)(72)+7@§)(ﬁ)@<>( ) = 0.
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For each fixed 7, this is a linear relation on the functions 652) (11). This relation
must be a multiple of the relation 8@52) — 15@&2) + 76:(32) = 0. But this would require
0 (13) = 0P (1) = O (1) for all 75, which is false. O

4. PROOFS OF MAIN RESULTS

We now prove the main assertion, Theorem 2.15 (as well as Proposition 2.13, which
is a special case). Fix all the notation ((k,1),U;, U, H® T, T... etc.) as in Sections 2.4
and 2.5.

4.1. Modularity. Firstly, we prove that the functions resulting from our construction
obey the expected modularity rules. The key ingredient for this part of the proof is the
following lemma on the differential of the action of I' on H.

Lemma 4.1 ([Shi00, Lemma 3.4]).

dor) ="Ml e (07 7= |G D) € U®)L Ten

Corollary 4.2. Let v = n(v1,72) be as in Remark 2.14. Then for every s > 0,
d(y7)|e=0 is of the form
y=0

s {0 =

that is, it is a matrix of symmetric forms with all forms outside of the x-coordinates

equal to 0. Similarly, dj(y7)|,— is of the form
y=0

s —
B0l = |, o
where * is the block of y-coordinates.

Proof. Let us argue for the case of x-coordinates only. The case s = 1 follows directly
from Lemma 4.1, since the identity

(14) d(y7) = A\ () " drpy ()7

yields, after specializing to v = n(y1,72), setting x = y = 0 and projecting onto the
dz-coordinates, the identity

t -1 -1
Ay (Y7) | o=0 = 0 Ay (71) 7 da iy, (T2)

The case of s > 1 is similar, only starting with an identity obtained by differentiating
Equation (14) multiple times. O
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Proposition 4.3. In the situation of Theorem 2.15, if d} f|,;1) 42 vanishes for all
s < r then d;,)\f"H(l)X’H(Q) satisfies the modularity rule

di A Sl spe@ (11, 72) =

_ -1
= (Pf&,l)()wl (71); py (71)) ®Pg,’(z,l)(Mg(ﬁ),sz(ﬁ))) i 2l seme (n71,7272)

where 11 € HV, 7 € 7_[(2)’% €I’y and vy € I's.
Similarly, assuming dj f|ya)«y vanishes for all s < r, the form dj , flywwn@
satisfies the analogous modularity rule with p| (;‘g ) replaced by p;(/,\C ) and with p, (;‘C )

replaced by p; (}\c %

»—0 is completely
y=0

analogous). Fix the element v = 7(71,72) € ' and related notation just as in Re-
mark 2.14, and note that for 7 = ¢(71, 72), we have y7 = (171, 7272) and

Proof. Let us argue for the operator dj f|,=o only (the proof for dj f
y=0

Ay (T) = A (1) )\W(TQJ . (1) = {/171(7'1) NW(TQJ .
Let us rewrite the modular identity
(15) F(7) = det(Ay (7)) det (s (7))~ f (77)

as

det(Ay (7))" det(uy (7)) f(7) = f(y7)

Applying the operator d.(—)|z=o0 then yields
y=0

-
det(n () det(uy (M) (|7 |) = b (70l
y:
since all the remaining terms on the left-hand side coming from the product rule contain
di f ({7—1 - ]) for some s < r and hence vanish. Rearranging the resulting equation
2
then yields

arr (|™ ] = detOn () dettus () (13l

y=

= det(Xy, (11)) " det(Ayy (12)) " det(py, (1)) ™" det(pgy (2)) ™" 7 (f (7 Dla=g -

By the chain rule for d" (f(y7)), we have

TN =Y X dfo (@(m).d ... dn(m),

a=1b1+ba+--+bg=r
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which gives

4z (FOT) =g = Z > (@flg) o (O d2an. ot 0m)
v= a=1by+ba+--+bg=r y= y=0

= Z > (d?:fle) o (dr(yr), d2(yr), ... b (vm)) g
a=1by+ba+-+bg=r y=0 y=0

(2flomg ) & (a3 dalrm)s o dalr)lop
y=0 y=0

where the second equality follows from Corollary 4.2 and the third one from the as-
sumption that d%f|z=o = 0 when a < r. Lemma 4.1 now leads to the expression
y=0

@ (£)le=p

= (d;f) (P/lﬁ 72,@}) e} (t)\'ﬂ (Tl)_ldl' Moy (7'2)_1, R ,t>\71 (Tl)_ldx Horyo (7'2)_1) .

Then, by definition of p’ as in (6), we further have

& (SO = 0 O () Lopa(e D (s (M7 1)

y=0
and altogether, we obtain

arf (|7 ] =dethn ()™ detun ()~ det(hny ()~ det(pns (7))

/(N —1’ “1ygr <[71T1 ]) .
% 0Oy (7)™ i (72) )L f .
Finally, projecting onto the S* K S*-component of p yields the desired result. O

4.2. Holomorphicity at cusps and tensor product decomposition. Proposi-
tion 4.3 shows that d; Al w2 vields a vector-valued function that transforms the
same way as the tensor product of automorphic forms in Theorem 2.15. To conclude
that dj, , fl341) g2 is such a tensor product, we employ the following linear-algebraic
lemma, going back to Witt [Wit41].

Lemma 4.4. Consideramap F : X XY — V®cW where V, W are finite-dimensional
C-vector spaces and X,Y are arbitrary sets. Let Lx (Ly, resp.) be a chosen finite-
dimensional subspace of maps X — V (Y — W, resp.). Fix a choice of basis {b;}}",
of V and {c;}]L, of W, and assume that

(1) for ally € Y and all j, the projection of F'|x, onto V & c; =~V belongs to Lx,
(2) for all x € X and all i, the projection of F|(,),y onto b; @ W ~ W belongs to Ly .

Then F' can be written in the form

F=> Gi®Hy, Gp€Lx, Hy€ Ly.
k

Before proceeding with the proof, we note that the assumptions of Lemma 4.4 are
independent of the choices of bases.
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Proof. When V and W are one-dimensional, we may identify V, W and V @ W with C.
Then the claim is the content of [Wit41, Satz A]. In general, expressing all the involved
vector functions as coordinate functions with respect to the bases {b;}j_; of V, {¢;}72;
of W and {b; ®c¢;};; of V@ W, resp.,the vector-valued functions X — V (Y — W and
X xY = V®W, resp.) can be treated as scalar-valued functions X x {1,...,n} - C
(Y x{1,....m} > Cand X xY x {1,...,n} x{1,...,m} — C, resp.) in the obvious
manner. This reduces the claim of the Lemma to the scalar-valued case. U

Proposition 4.5. In the situation of Proposition 4.3, the form d;’/\f\Hu) (1) satisfies
the assumptions of Lemma 4.4 with

XZH(l), LX—M+>\ ( 1) and Y:H(2), LyZMf,)\ (FQ).

P1,(k 1) Pa (k1)

Similarly, the form d;)\f]?_[(l) w1 satisfies the assumptions of Lemma 4.4 with

X=HW, Lx=M_, (I'1) and Y =H®, Ly =M, (I).
P1,(k,0) P2, (k1)
Proof. Aslong as neither of the unitary groups Uy, Us is of signature (1, 1) or quasi—split
over Q, to verify whether the form d ) fly @ wam or dj yflya g, after restriction
and projection as in Lemma 4.4, produces automorphic forms of the indicated level
and weight comes down to verifying the appropriate modularity rule. In this case, the
conclusion immediately follows from Proposition 4.3.

When U; or Uy is of signature (1, 1) and is quasi-split over Q, we additionally need
to verify the holomorphicity at cusps condition. Note that in this case, there is no
need to take any projection to S* components, and we therefore suppress A from the
notation to simplify from now on (cf. Remark 3.3).

Let us assume that Uy is of signature (1,1) and is quasi-split over Q, fix 7, € H(?) and
let us verify the holomorphicity at cusps in the case of d fly) y (r,) and dj flaym) « (ry}-
The arguments are the same in the remaining cases. Acting on f by n(8) where
B € SLy(Q), it is enough to verify holomorphicity at oo.

We consider first the case (UT), i.e. the situation when U(R) is identified with U(n,,)
and U is itself quasi-split. In this case, it is enough to even consider d7, f|,,1) (m} only,
as the reasoning for dj f l2y1) (o} 18 completely symmetrical. We consider the Fourier
expansion of f written as follows,

(16) f(r) = Z c(h) exp(2mi(him + tr "hay + tr haz + tr haTs)),
h
| R . . » . .
where h = he B ranges over the appropriate lattice of Hermitian matrices, with
3 N2
hi a number and hg a block of size (n — 1,7 — 1). Then we have
d.f (2mi)" Z Z 5 exp(2mi(tr hym + tr thigy + tr hgx + tr homo))dz,,

where a = (41,142, . ..,i,) is a multi-index and h§ denotes hgl)th) o héir), the product

of respective entries of the row vector hs.
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Consequently, we have
(17)

dgf]wzg = (2mi)" Z Z c(h)h§dxy exp(2mi(him + tr hoTa))
Y= h «

(18) = ZZ (2mi)" Z c ([Z; :j]) 5 exp(2mitr(hate)) | exp(2mwihim)dx,,

o hy ha,h3

C(h1,a)

where for fixed 72 and «, the terms C(hy, o) are the Fourier coefficients for di, f|5) 1,1
projected onto dz,. It follows that such a coefficient indexed by h; can be nonzero only

2

if hy fits into a positive-semidefinite Hermitian matrix [hl }IZ 3] . In particular, in this
3 ho

case hy; > 0, which proves the claim.

In the case (UB), we proceed similarly using Fourier—Jacobi expansions. Let us
assume m > n, and utilize a change of coordinates on U according to Section 2.3.
That is, we may treat f as a function f(7,u) on the symmetric space H,, , instead,
and consider the variant of the construction outlined in Remark 2.17. In the notation

introduced therein, the Fourier—Jacobi expansion takes the following form:

(19) flru) = Z c(w,ug; h) exp(2mi(hi + tr "haz + trhsz + tr hoTa))
h
(recall from Remark 2.17 that z,w are names for y-coordinates based on whether they
come from 7 or w). In the case of the operator d’(—), the argument above applies
almost verbatim, replacing c(h) with c(w, ug; h), tr thig,y with tr thgZ, etc.
In the case of the operator dj(—), the same argument still applies, but the formula
for the resulting coefficients C'(hi, ®) is more involved; namely, we have

C(h1, o, B) = Z OwC (0,162; V;LI Zﬂ) (274)1%1hg exp(2mitr(homs))dzadws.
ha s 3 ha

Here o, 8 are again multi-indices with ||+ |3] = r, where |a/|, | 5| denotes their lengths.

The key point is that when the matrix h is not positive-semidefinite, the coefficient

functions c(u; h) are identically zero functions of u, and therefore so are all the partial

derivatives d,,c(—;h) appearing in the formula.

Finally, the remaining case is when U is of equal signature (n,n), but not itself
quasi-split. The argument in this case uses the second variant of coordinates listed in
Section 2.3, but otherwise goes along the same lines as the above two variants. To
avoid excessive repetition, we leave this case to the reader. O

Proof of Theorem 2.15. Theorem 2.15 follows directly as a combination of Lemma 4.4
and Proposition 4.5. Let us only stress the point that the spaces Lx, Ly taken in
Proposition 4.5 are finite-dimensional, so that Lemma 4.4 applies. O

We finish this section with the observation that our construction produces cusp forms
out of cusp forms.
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Proposition 4.6. In the situation of Theorem 2.15, assume that we are in the case

. » ,
(UT) and that f is a cusp form. Then the decomposition of dj ) f 0 gz AL be

written in the form Y fi ® Fy, where all the forms fy, F}, are cusp forms of appropriate

levels and weights. Similarly, in the decomposition dy , f ’ = > gr®GYy, all the

HD) xH(2)
forms gy, Gy can be taken as cusp forms.

Proof. We may repeat the proofs of Proposition 4.5 and Theorem 2.15 almost verbatim,
with the following two adjustments:

(1) In the Fourier expansion for f (Equation (16)), one has ¢(h) # 0 only when the
Hermitian matrix h is positive-definite (rather than non-negative). As a result,

writing again
h = hl thfS
hs hi

for hi, ho Hermitian matrices of the appropriate dimensions, the coefficients in the
analogue of Equation (18) are nonzero only when hi, hy are positive-definite.

(2) As a result, we conclude an analogue of Proposition 4.5 (hence an analogue of proof
of Theorem 2.15) with the choice of Lx and Ly as the spaces of cusp forms (of the
indicated level and weight) instead of the full spaces of automorphic forms.

O

5. ALGEBRAIC GEOMETRIC DIFFERENTIAL OPERATORS

We now explain how to reformulate our differential operators algebraic geometri-
cally. While unnecessary for the explicit application above, this gives a coordinate-free
description of the operators that could be seen as more intrinsic. It also shows that
the construction can be realized over a smaller ring than C. The idea for this for-
mulation is based on the geometric construction of the Maass—Shimura operators in
[Kat78] that was extended to symplectic groups in [Har81b] and unitary groups in
[Eis12,EM21, EM22].

This section is divided into two portions. First, in Section 5.1, we introduce the
main ingredients in a general setting, without specialization to automorphic forms or
unitary groups. Then, in Section 5.2, we specialize to the setting of certain Shimura
varieties of type A (unitary groups), noting that type C (symplectic groups) can be
obtained similarly. The main result of this section is Theorem 5.5, which reformulates
the differential operators from earlier in the paper algebraic geometrically.

5.1. Ingredients. In this section, we introduce ingredients for our geometric reformu-
lation of the differential operators. These ingredients are schemes and sheaves with par-
ticular properties (5.1.1), the Gauss—Manin connection and Kodaira—Spencer morphism
(§5.1.2), algebraic differential operators on algebraic de Rham cohomology (§5.1.3), and
Maass—Shimura operators (§5.1.4). We will specialize to the setting of relevant Shimura
varieties in Section 5.2. To aid with clarity, Section 5.1.5 summarizes the key takeaways
from the present section that will enable us to efficiently construct the operators in our
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specific setting. For readers seeking a more detailed treatment of the ingredients intro-
duced in this section, we recommend [EFMV18, Section 3|; other possibilities include
[EM21, Section 5.1], [Eis12, Section 3], and [Har81b, Section 4].

5.1.1. Schemes and sheaves with particular properties. Given a smooth morphism of
schemes Y — T and a polarized abelian scheme 7 : A — Y, we consider the Hodge
bundle

(20) wayy = 7y y

and the algebraic de Rham cohomology HJ (A/Y). When the data A/Y is clear from
context, we set w = wy y and Hip := Hip(A/Y). Likewise, when the data Y/T is
clear from context, we set @ := Qy/p = Q%//T. We identify w with its image in HéR
under the Hodge filtration

0= w— Hiz - R'%,04 — 0.
Given a T-subscheme ¢ : Y/ < Y, we have exact sequences of sheaves
(21) 0— N}\//’/Y — L*Qy/T — QY’/T —0
0— 73/’/T — L*’R//T — Ny//y — 0,

where Ty p = Q%T and Ty )r = Qy, /7 are tangent sheaves and Ny /y denotes the
normal sheaf on Y’. The sheaf N/, /Yy is the conormal bundle. In general, these exact
sequences do not split. We will see in Section 5.2.4 that there is a canonical splitting,
however, for the particular embeddings of Shimura varieties of types A and C arising
in Section 5.1.3.

5.1.2. Gauss—Manin connection and Kodaira—Spencer morphism. We will construct dif-
ferential operators from the Gauss—Manin connection

V =Vyuy : Hig = Hig ® Q%’/T
and the Kodaira—Spencer morphism w ® w — Q%/ /7 Since V is a connection, we have
(22) V(fu) =uxdf + fV(u)

for all f in the structure sheaf of Y and sections u in H}z. As noted in Section 5.2.3,
in the setting of Shimura varieties of types A and C, the Kodaira—Spencer morphism
induces an isomorphism

(23) ks: Q! 55 02,

where w? is a certain subsheaf of w®?. When we have such an isomorphism ks, we
identify Q' and w? through ks.

Via the Leibniz rule (product rule), V extends to a connection on tensor powers,
symmetric powers, and exterior powers of w and of H, éR- More generally, this also ex-
tends further to include sheaves obtained by applying Schur functors, like in [EFMV18].

We will denote such sheaves by F immediately below.
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5.1.3. Algebraic differential operators on algebraic de Rham cohomology. When we have
an isomorphism ks as in (23), we compose V with 1 ®ks to obtain algebraic differential
operators
D: Hlp — Hiz ® W’

We can iterate the operator D, d times for each positive integer d, to obtain differential
operators D¢ = Do --- o D that are applied to H, (}R and, more generally, to sheaves F
formed from H éR as described immediately above.

Given a T-subscheme ¢ : Y’ < Y as above, we denote by F,. the subsheaf of sections
of F that vanish to order r on Y, i.e. sections >, fiu; with the u; a basis of nowhere

vanishing sections in F and the f; elements of the structure sheaf such that f; vanishes
to order r on Y’ for all i.

Lemma 5.1. Suppose we have the isomorphism ks on Y as above. For F and ¢ as
immediately above, we have .*(D"F,) C t*(F ® Sym" Qy 7).

Proof. This follows immediately from applying Equation (22) to a section of F that
vanishes to order r on Y. g

Suppose we have the isomorphism ks on Y and an embedding ¢ : Y’ < Y as above.
If, additionally, the exact sequence (21) splits, then we denote

T Qyyr — NV

the projection onto NV mod Qy- y7- We also use the same notation for the induced
projections on symmetric powers

7 " Sym? Qyyr — Sym4(NVY).

Furthermore, we write m to mean the projection id,«r ® m, where id,~r denotes the
identity on ¢*F. This simplifies notation, and there will be no ambiguity about the
meaning in the contexts in which we will employ this notation. Under these conditions,
we define an operator

(24) O =m0 o (D"|x): Fr — 1 (F®Sym" V).

Explicitly, if fu is a section of F, with u a nonvanishing differential and f in the
structure sheaf, B = {0;},,,, a basis for the tangent bundle, and B' = {w;},-,-,,
the dual basis for the cotangent bundle, then o

(25) Ko (DME)(fu) =1 [u® Z By -+ Oy, (F)wy, - - wy,

1<u <<vp<m

5.1.4. Brief digression on Maass—Shimura operators. Although Maass—Shimura opera-
tors are not the main focus of this paper, it will be useful for us to recall their construc-
tion briefly. (Much more detailed treatments are available in [Eis12, Har81b, Kat78].)
Suppose we, for the moment, extend our consideration from the algebraic to the C'*°
setting and take Y to be a manifold over which the Hodge decomposition HellR =
HY0 ¢ H%! holds, with w = HY. Still working in the C* setting, the projection of
H}p onto w mod H%! induces projections from (H, éR)®d to w®?, and we have analogous
results for the sheaves F. Suppose we have the isomorphism ks as above. Let D be
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the operator obtained by composing the algebraic operator D from Section 5.1.3 with
this projection. We have that H%! is holomorphically horizontal, i.e. V(H%') C H%!,
Thus, D commutes with taking quotients mod H%!, and it makes sense to iterate the
operator D d times to obtain operators D%. In the setting of where F is a sheaf of auto-
morphic forms on a Shimura variety Y over C, this operator is called the Maass—Shimura
operator. In general, sections in the image of D% are merely C*, not holomorphic. As
a corollary of Lemma 5.1 concerning the operator D, we have the following result for
an embedding ¢+ : Y’ < Y of manifolds analogous to the one for sheaves above.

Corollary 5.2. Suppose we have the isomorphism ks on Y as above. For F and ¢ as
immediately above, we have .*(D"F;) = *(D"F;) C «*(F @ Sym" Qyr).

Proof. This follows immediately from the proof of Lemma 5.1, together with the real-
ization of D as the quotient of D mod H%!. O

5.1.5. Takeaways. In Section 5.2, we employ the above ingredients in a special setting;:
automorphic forms on unitary Shimura varieties. The operator ©" and a variant we
produce below will be our desired differential operators on automorphic forms. Thus,
we need to select specific instances of the following:

e Schemes A, Y, and T and an embedding of T-schemes ¢ : Y’ < Y meeting the
above criteria
e A sheaf F on Y meeting the above criteria

such that the following hold:

e The sections of F can be identified with automorphic forms on unitary groups,
and the sections of t* F correspond to automorphic forms on the desired product
of unitary groups.

e Over C, t : Y/ — Y can be identified with the embeddings of Hermitian sym-
metric spaces from the first part of this paper, and F is identified with the
space of automorphic forms. (N.B. Over these Hermitian symmetric spaces,
we have the Hodge splitting of H 53, so we do not need to check this criterion
separately.)

e The exact sequence (21) splits.

Once we have all this, as well as an additional splitting of AV, Equation (25) will enable
us to see that we have produced algebraic differential operators on algebraic geometric
automorphic forms that agree, over C, with the differential operators produced earlier
in this paper.

5.2. Differential operators on algebraic automorphic forms. We now specialize
the constructions and results from Section 5.1 to the setting of automorphic forms on
certain Shimura varieties of type A (unitary groups) and C (symplectic groups). The
first three portions of this section recall material that is already well-covered in the
existing literature (or straightforward to deduce from the existing literature): Section
5.2.1 briefly recalls key properties of certain Shimura varieties of types A and C (in-
cluding those that will play the role of Y’ and Y from above in our setting), Section
5.2.2 introduces some well-known sheaves, and Section 5.2.3 states the Kodaira—Spencer
isomorphism ks for such Shimura varieties. The only new material in this section is
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covered in the last two portions: Section 5.2.4, which establishes splittings for the
conormal bundle NV, and Section 5.2.5, which completes the construction of our al-
gebraic geometric differential operators and proves that they coincide over C with the
differential operators defined earlier in the paper.

We keep the background on Shimura varieties concise, recalling only the details
necessary to move ahead. Without this approach, it would be easy for the reader to get
lost in well-established information about Shimura varieties and miss the main points
about what is actually new here, namely the differential operators. In case the reader
would like a more thorough treatment of the background material, though, we cite
references that go into much more detail and generality.

5.2.1. Some Shimura varieties. We introduce certain Shimura varieties of type A (uni-
tary) and C (symplectic), whose components over C can be identified with the Hermit-
ian symmetric spaces from earlier in the paper. Everything in this section is covered in
more detail and generality in the literature, e.g. [Lan20,Kot92, Lan13]. The literature
closest to the presentation here includes [Eis24, Sections 2.2 and 4.4.1], [EHLS20, Sec-
tions 2.3 and 3.1], and [EM22, Sections 2.1 and 2.2].

We shall handle the cases of unitary groups (the setting of the present paper) and
symplectic groups (the setting of Cléry and van der Geer’s work [CvdG15] upon which
we build) simultaneously. Following the usual conventions, we refer to the unitary case
as type A and the symplectic case as type C. For clarity and simplicity, we only intro-
duce here the particular instances of type A and C Shimura varieties whose connected
components over C correspond to the Hermitian symmetric spaces in our and Cléry—
van der Geer’s work. It is straightforward to extend our entire construction and results
to all type A and C Shimura varieties, though.

For the remainder of the paper, we fix a choice of setting: either unitary groups
(where our results earlier in the paper) or symplectic groups (like in [CvdG15]). We
refer to these as type A and C, respectively. Furthermore, we fix a field K, K-vector
spaces V, and V3, and nondegenerate pairings (, ), and (,)g on V, and V3, respectively,
that meet the following conditions:

e For type A, we require that K is a quadratic imaginary extension of Q and that
the pairings are Hermitian.

e For type C, we require that K = Q and that the pairings are symplectic.
We set W =V, @V} and denote by (, ) the pairing on W defined by ((va, vg), (va, vjs)) =
(Vas Vy)a + (v, v5)p for all va,ve € Vi and vg, v € Vj. From this data, we obtain
PEL Shimura data and associated schemes M, Mg, and My, which correspond to
the (unitary or symplectic) groups that fix the pairings on each of these vector spaces.
Let E be the compositum of the reflex fields here, so these schemes are all defined over
Spec(F). The field FE is a subfield of K.

Shimura varieties in this context correspond to similitude groups. Given a K-vector
space V and a pairing (,)y on V, we denote by G(V, (,)y) the subgroup of GL(V)
preserving (,)y up to similitude. We set Go = G(Va, (;)a), Gg = G(V3,(,)p), and
Gu = G(W,(,)). We denote by G, g the subgroup of G, x G consisting of elements
(ga,bg) with the same similitude on each of the two factors. There is an associated
scheme M, g defined over Spec(E).
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Associated to the canonical inclusions and projections of these groups, we have mor-
phisms of schemes

L:Maﬁ‘—%/\/lU
j:Ma’5‘—>Ma XEMg
Mo xp Mg — Mg,
Ma XEMﬁ—»M@.

We denote the composition of j with the last two projections by
Da : Mapg — Mg
pg: Mag — Mg.
For each of the subscripts (1 on M, we have universal abelian schemes
70 Ag — Mpo.

When it will not cause confusion, we drop the subscript.
We make three remarks about the relationship with the material earlier in this paper:

e The morphism ¢ is precisely the specialization to our setting of the morphism
¢ introduced in general in Section 5.1, i.e. we take Y = My and Y/ = M, .
In the notation of Section 5.1, we take 1" = Spec(FE), or we extend scalars and
work over a Spec(FE)-scheme T'.

e My(C) is a finite union of disjoint copies of the Hermitian symmetric space
hy for the subgroup U of GL(W) preserving the pairing (,). In type A, U is a
unitary group and hy = H := Hy; and in type C, U = Sp, and hy = $, for
g=dimW.

o M, 3(C) is a finite union of disjoint copies of h, x hg, with b, and bhg the
Hermitian symmetric spaces for the subgroups U, of GL(V,) and Ug of GL(V3)
preserving the pairings (, ) and (,)g, respectively. In type A, this corresponds
to the embedding Ho xHg — H = Hy associated to the inclusion U, xUpg — U,
like in the first part of this paper. In type B, this corresponds to the embedding
HjxHNg—j = HNg, with j = dim V,, and g—j = dim Vj, associated to the inclusion
Sp; X Sp,_; < Sp, like in [CvdG15].

5.2.2. Some sheaves. For each of the subscripts [1 on M, we set

wnO = wAD/MD’

where the right hand side employs the notation introduced for the Hodge bundle in
Equation (20). When it will not cause confusion, we drop the subscript. We also set

H := Hy := Hig (Ay/Mp).
In type A, complex conjugation on K induces decompositions
(26) w=wt®w”
(27) H=H"®&H",
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with the +-submodules determined by the two possible actions of K (i.e. acting through
the involution or its square). We also have similar decompositions for any modules in
the setting of type A, and we denote the superscripts similarly.

Given a vector bundle G, we write A*PG for the top exterior power of G, i.e. A'°PG =
A"G, where r denotes the rank of G. Let k and £ be integers. For type A, a scalar-valued
automorphic form of weight (k, ¢) is a global section of the line bundle

w(k!) — (/\topw—i-)k ® (Atopw—)ﬁ'

For type C, a scalar-valued automorphic form of weight k is a global section of the line
bundle

Wk = (APP)F,

More generally, automorphic forms for type A and C are defined in, for example,
[Eis24, Section 3.3] and [EM22, Section 2.2]. We briefly recall the definition now.
When we remove the requirement that we are working with scalar weight forms, the
definition of automorphic forms employs the sheaves £ := Isomp,,(w, 0%,) for type
Cand € := & @ & with &1 := Isomp,, (wi,(’)iﬁ) for type A. (Here, Oy denotes
the structure sheaf of M, ay is the rank of wy, and a is the rank of w.) Given a
representation (p, M) of H = GL, or H = GL,, xGL,_ over E, we define

wP =& =& xH M,

to be the sheaf such that for each E-algebra R, w”(R) = (£(R) x M ® R)/ ~, with the
equivalence relation ~ given by (£,m) ~ (g€, p(tg~1)m) for all g € H. An automorphic
form is a global section of w?” = £P. Motivation for this definition is provided in [Eis24,
Remark 3.2.8]. Note that this construction is compatible with extending scalars. Over
C, automorphic forms defined this way can be identified with automorphic forms defined
earlier in the paper. It is straightforward to see that the Maass—Shimura differential
operators defined in Section 5.1.4 also respect this compatibility (which is also addressed
in more detail [Eis12, Remark 8.1]).

5.2.3. Kodaira—Spencer isomorphism. Over Shimura varieties of types A and C, the
Kodaira—Spencer morphism induces an isomorphism

ks : Q2 w?,
where
(28) 9 wt ®@w™  for type A (unitary groups)
w’ =
Sym?w  for type C (symplectic groups).

Going forward, we identify Q with w? via ks. More details about the Kodaira-Spencer
isomorphism in our settings is available in, for example, [EM22, Section 3.1] and [Lan13,
Section 2.3.5].
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5.2.4. Splitting for conormal bundle. For our embeddings of Shimura varieties of type
A or C, the Kodaira—Spencer isomorphism induces a canonical splitting of the conormal
bundle introduced in Section 5.1.

Lemma 5.3. We have a canonical splitting

My = Q1 EBNX/ta,B/MU’

and furthermore,

N/\\/Aa o = {./\9/ @ ./\/'li, type A (lfnitary groups)
* Pawa ®@ piws, type C (symplectic groups),
with
Y= (Pawa @ Phwg)
NY = (piwd @ phwy)-
Proof. We put w = wy,/m,- Via the Kodaira—Spencer isomorphism from Section

5.2.3, we have
QMU/T & w2
Qi1 2w
Dty = w%.
We also have
Qo 5/ = PaSlMy/T ® PR
1w = ppawa D paws-
For type A, we additionally have
V't = phws ® phw -
Putting this together and setting
Loy = (Phwd @ phwy) @ (Phws @ phwy), type A
’ Pawa ® pawg, type C,
we get
L*QMU/T &~ L*(wQ)
(29) = pi(w2) © P(wh) ® Lag
= PaMy 1 D PEMy T D Las
= QMQ7ﬁ/T D ['a,ﬁ'

Following the convention from Section 5.1.3, we denote by

T Qg e = NY
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the projection onto NV mod O, /T In the unitary setting (type A), we denote by
Ty Qg — NY

the projections onto NY mod Q. 5/T P J\/¥ We also use the same notation for the
induced projections on symmetric powers

7 : " Sym? Qpmpy 7 = Sym?(NY)
T 0 Sym? Qg — Sym?(NY).

Furthermore, similarly to the convention we established for 7 in Section 5.1.3, we write
7+ to mean the projection id,» r ® w1, where id,« r denotes the identity on (*F. This
simplifies notation, and there will be no ambiguity about the meaning in the contexts
in which we will employ this notation.

5.2.5. Algebraic differential operators on automorphic forms on unitary (and symplec-
tic) groups. For the remainder of the paper:

e k and / are integers.

e F is the sheaf w¥ or the sheaf w9 on My, depending on whether My is of
type A or C.

o L : Mgy — My is the canonical embedding of Shimura varieties of type A
(unitary groups) or C (symplectic groups) introduced above.

e F, denotes the subsheaf of 7 whose sections vanish to order » on M.

We have the following algebraic differential operators that take automorphic forms that
vanish to order r on My to automorphic forms of higher weight on M, ;:

(30) 0" : F = *F®Sym" NV,

which was defined in Equation (24) by ©" := wo* o (D"|£,). For type A, there is also
an algebraic differential operator

(31) 0% : Fr — *F ® Sym” MY
defined by O := 14 0¥ o (D"|£,).

Remark 5.4. A reminder about notation: D denotes the algebraic differential opera-
tor defined on de Rham cohomology in Section 5.1.3, and D denotes the Maass—Shimura
operator from Section 5.1.4.

Theorem 5.5. The algebraic differential operators ©" and ©', coincide over C with
the other differential operators defined in this paper, in the following sense:

(1) 0 = 7ot o (D))

(2) O =m0 o (D5, )

(3) On global sections of F,, ©', is the holomorphic operator defined in the first part
of this paper, and ©" is the holomorphic differential operator defined [CvdG15].

Remark 5.6. By “coincide over C,” we mean that the operators coincide when ©
and O4 are restricted to connected components of My (C).
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Proof. The first and second equalities follow from Corollary 5.2, together with the
definitions ©" := 7o * o (D"|£,) and O := w4 0 * o (D"|£,). The final statement
follows from Equation (25), together with the definitions of the projections 7 and 7.
As noted above, over C, automorphic forms defined as global sections of a sheaf can
be identified with automorphic forms defined as holomorphic functions on Hermitian
symmetric spaces like in the first part of this paper, and the differential operators are
also compatible with this identification. O

Remark 5.7. The operators © and ©4+ can be applied not only to scalar-valued
automorphic forms but also to vector-valued ones. That is, it is straightforward to
define them on vector bundles of automorphic forms instead of just line bundles of
automorphic forms. Since the first part of the paper only handled scalar-valued ones,
though, we emphasize that case here.

Remark 5.8. Computation of the Maass—Shimura operators in coordinates shows
that if we replace F, by a larger submodule F’ of F, then the images of mot*o(D"|#/) and
w1 o o (D"|£) consist of C*-automorphic forms that are not in general holomorphic.
One can see this already in the simplest example, namely Spy X Spy < Sp,. On the
larger modules of holomorphic forms merely vanishing to order r in the normal direction
or the -direction, the holomorphic operators from earlier in the paper coincide with the
holomorphic projection of these C*° Maass—Shimura operators. Similarly, the operators
©" and O, do not extend to algebraic operators on a larger subsheaf of F. Although
we shall not need it here, readers seeking an explicit treatment in terms of coordinates
might consult [Har81b, Section 4] and [Eis12, Sections 3.1.1 and 8.4]. Those wishing
to investigate holomorphic operators even further might consult [Har86].
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